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ON THE STATISTICAL THEORY OF TURBULENCE*

By W. Heisenberg

The interpretation of turbulence presented in the preceding paper
by v. Weizsaecker is treate& mathematically with the aid of the custom-
sxy method of Fourier analysis. The spectrum of the turbulent motion
is derived to the smallest wave lengths, that is, into the laminsr
region; the mean pressure fluctuations and the correlation functions are
calculated. Finally, an attempt is made to derive the constent which is
characteristic for the energy dissipation in the statistical turbulent
motion from the hydrodynamic equations.

In the statistical theory of turbulence developedby G. I. Taylorl
and v. K&&j* the irregulsr turbulent motion of a fluid is described
by several characteristic functions between which simple mathematical
relations exist: the “spectral” distribution of ener~ to waves of dif-
ferent wave length, the correlations between the velocities at points
along a prescribed displacement in space or time, and the like. The
reports of G. 1. Taylor contain detailed empirical and theoretical data
on these functions.

In his preceding report, v. Weizsaecker3 derived the most @ortsmt
of these functions, the spectral distribution of ener~ for the limiting

*“Zur statistischen Theorie”der Turbulent.” Zeitschrift ftirPhysik,
vol. 124, 1948, pp. 628-657.

l-kylor, G. 1.: Proc. Roy. Sot. A 151, 421 (193~)j 156, 307 (1936);
164, j&~)~16$ 476 (1938).

. : Journ. Aero. Sci. 4, 131 (1937).
3c. l?.v. Weizsaecker: ZS f. Phys., being published. V. Wei.zsaecker’s

paper and the present treatise have been written in close collaboration
during the time of our stay in England in 1945. OIY,Wafter the ~ticles
had been finished, Mr. G. I. Taylor kindly told us (spring 1946) that
essential ideas in these articles had been found and published already
by KoUnogoroff: Compt. Rend. Acad. SC. USSR 30, 301 (lgbl)j 32, 16 (1941);

and Onsager (Phys. Revue 68, 286, 1945). Compere s,report by G. K.
Batchelor at the VI. Internat. Kongress F. angew. Mech&ils, Paris 1946.
Approximately at the sane time we learned, furthermore, about a paper ‘ “:
by Prandtl and Wieghsrdt which contains simi.lsxconcepts and has mean-
while been published in the G8ttingen Academy reports (Nachrichten der
Akademie der Wissenschaften in G8ttingen, Math.-Phys&al KLasse of the
year 1945, p. 6). The present paper may therefore be regsrded only as
a supplement and completion of these esz?13erinvestigations.
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case of large Reynolds numbers on the basis of similitude
The following sections of this paper first will translate
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9

considerations.
v. Weizsaecker’s .

consideratio~ into the accusto~ed terms of Fourier analysis and, with
the aid of this translation, study the discontinuity of the spectrum for
high frequencies due to molecular viscosity. Then conclusions willbe
drawn for the correlation functions and the pressure fluctuations, sad
finally, a derivation of the fundamental constknt of the ener~ dissipa-
tion will be attempted.

1. Representation of v.

in the Terms of

—

Weizsaecker’s Considerations

Fourier Components .-

At sufficiently high Reynolds nurbers the energy dissipation for
the turbulent motion takes place in such s,manner that the large turbu-
lence elements lose energy due to the fact that, for them, the energy
and momentum transfer by small turbulence elements has the effect of an
additional viscosity (cf. for instance Prandt14).

Under steady-state conditions, energy thus is continuously trans-
ferred from larger to smaller turbulence elements, with the spectral
region of a certain wave length always receiv~ fr~m M-ger waves as

●

much energy as it gives off to smaller waves. For maintenance of this
equilibrium a certain ener&y distribution is necessary whichj when the
molecular friction is neglected} is represented according to v. Weizsaecker

●

by the law

u

(1)
——

F(k)+ k-5/3

(k= 231 signifies the wave numiber, V. =
wave length F or measure of

the mean velocity.5) This spectrum F(k) - k-~/3 is bounded on two sides.
For small wave rnnnbers,that is, large wave lengths, for one reason or
another, it will no longer be possible to regard the flow_as isotropically
turbulent, for the largest turbulence elements are governed by the geom-
etry of the devices which generate the turbulence. TM.s end of the spec-
trum for small k therefore cannot in any case be the subject of a purely
statistical theory. For lsrge k, In.contrast, the spectrum is bounded

4L. Prandtl, Str6mngslehre (Flow theory). ~ieweg, Braunschweig, --
Srd edition 1942, p. 105 ff. ;_.~..-

5our V. differs from the V. in v. Weiz~aecker’s report by a

numerical factor of the order of magnitude of 1.
●

—
— ..—
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by the moleculsr viscosity. For large k, finally, the molecular vis-
cosity will become larger than the apparent turbulent viscosity, and
the spectrum then will drop off very rapidly.

For the calculations, we shall use the following notation: the
velocity ~ in a normalized volume V is to be expsmded into a Fourier
series

(2)

Therein ~ = Y..k
— —

k sndk+m iS

thus

and the nu?iberof the “natural vibrations” between

given6 by kk2 ~VO men OU obtd~

(%)3

1%’1 =$&2fi&3 %2 = ‘(k)-Ilf

IIF(k) = (2YC)-?k’V~k2 (4)

(3)

From div ~ = O there follows

(5)

Let us call the coefficient of the moleculaz-viscosity, p. The
mean energ loss then is, because of div y = O with the assumption
that the bounding surfaces sxe at rest:

%his method is somewhat less apparent, but mathematically more
convenient than the customary &pansion with respect to SiIl and COS.

It amounts formally to the limiting condition that ~,%y~x, . . . at a
bounding surface of the volume V sxe to have the same values as at the
opposite boundq surface. z
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T

s = w(rot~)2 (6) s -

(7)
-—-

If the spectrum obeys in a large region the law F(k) - k-~/3, the

total energy is determined by the largest turbulence elements. We may

assume for instance that the law k-5/3 is valid down to a minimum wave
number ~; for smaller k we shall assume

J

,03
2VO=2 F(k)dk = 2

f
‘c

o ~im

Thus

and

V()2
c= — 2/3

3%

‘(k)=o” ‘en

.—

(8]
.

●

-. .

I
Vo?I&/3(@~k2 .

6YrVk11/3

(9)

(10)

V. Weizsaecker considers the energy loss Sk of that portion of

the total spectrum the wave numbers of which lie below k. For these
turbulence elements, the turbulence elements of smaller wave length
(<2ti/k)have the effect of an additional viscosity. One may therefore
generally write

- -——

(IL)
—. .—.

where ~k is to designate the additional turbulent viscosity; it iq

produced by the cumulative action of all turbulence elemkrrtswith wave ‘- ●

lengths < 2n/k. With respect to ~me~ions} ~k is accord- to
Prandtl the product of density, mixing length, and velocity where the 9

—.-
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●

mixing length wiKl be comparable to the dismeter of the turbulence ele-
ments in question whereas the velocity of the turbulence elements is

● given for instance by vO(~/k)l/3. With reference to v. Weizsaecker’s

report one will therefore put

“= ‘p~m “m

(1,)

(~ is a numerical factor)
The expression below the integration sign is essentially determinedly
dimensional considerations;but one could of course imagine that, for
instance, the waves k’ in the proximity of k enter into the integral
with somewhat different weights than the waves with large k values;
that is, the integrand could depend, in addition, on the dimensionless
number k’/k. However, because of the homogeneous form of the spectrum

F(k) z k‘5/3, one may include all these uncertainties in the numerical
factor ~ smd give to the integral arbitrarily the exact form (12).

This method is unobjectionable in the region of tlk k-5/3-law but
becomes inaccurate at the ends of the region where the
molecular friction modifies the spectrum.. But even at
(12) will still be a good approximation which at least
correctly represents the effect of friction.

.
The constsat R in equation (12) must be exactly

geometry or the
the latter limit
qua~tatively

determined bv
the hydrodynamic eqpations; it has the sane numerical-value in all ~ases
where one may speak of statistical isotropic turbulence, and does not
depend in my way on the geometry of the flow. me theoretical deter-
mination of this hportant rnuiberwill.be attempted in section ~. There,
it will also be shown that the turbulent energy dissipation actua~ may
be written as a double integral of the type

J

k

J

m
dkl... C&’r , . . , with the integrand signifying the energy

o k
transferred from k’ into k!’ per unit time (equation (@)). This
integral is more complicated than the simplifying expression (13) which
results from (U.) and (12)j however, for the following considerations (n)
and (1,) may be regarded as sufficient approximations. For Sk one thus
obtains

Sk=[+~~~tii1~9)~kF(ki] .,ki2dkr (13)
o

●

The decisive step of v. Weizsaecker’s consideration is the state-
ment that this expression for k>>% must be independent of k:

.
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Sk =

because the total ener~
of the spectrum, and the
of k.

.- J

NACATM 143i “ - -

S = const (for k>>ko)

(Ii) -----*

lies, &host entirely, in the long-wave region
.

energy “transport” thus must become independent

-— -

Equation (13) may therefore be interpreted as the_determining equ-
tion of the turbulent spectrum F(k) which must yield for the region of

large Reynolds numbers the k-~/3-law, and for still krger k values
the fading of the spectrum due to the molecular viscosity.

. ...— =-..—- , —m..=

2. Shape of the Spectrum in the Region of’the

Smallest Turbulence Elements

We put first V/P = v and differentiate (13) with respect to k.
Then there results

Then we define new variables x

X.lgk
G’ F(k)

Therewith (15) is transformed into

and w by the equations

= F(ko)e-wj w =w(x) (16)

r%- ‘kOfi (cf. equationThe constant # — - —
FO Kv~

—

.-. . .

J. -w& (17)

-—

(9)) !S essential the ._.

reciprocal Reynolds number of the total flow and
small; if the Reynolds number itself were s~ll,
turbulent at all. By repeated differentiation there originates from (17)

therefore always vein.. __
the flow could not be

..

(18)

*
---

—.
— .-.

—. -.
. .

—
-. -.
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In this equation, one may
pm W+x

approximately evaluate the integral

.
/ dxe 2 by expanding w(x) in the proximity of x: W(X1) =
‘x

w(x) + (xl-x) g+ . . . and breaking off after the second term. Since

the exponential function rapidly decsys, one thus obtains a good approx-
imation

W+x

J

m W+x -—

dxe-7=2~
l+;

(19)
x

~ substitution into (18) there finally results

One recognizes from (20) immediately the
not too isrge x and w the first-.
one obtains

.

(7-g) =++g)Y i.e.

as must be the case according to v.
and w, in contrast, the first term
then have

dw—=7 F-
ax

term

dw—=
dx

variation of the spectrum.
in the sum may be neglected

(m)

For
and

()~j F(k) = FO &
-5/3

(21)

Weizsaecker’6 theory. For luge x
predominates; therefore one must

const k-7 (22)

In the region of the smallest turbulence elements the spectrum therefore
decays very rapidly, namely with the seventh power of the wave nuniber.

Only in the transitional region from (21) to (22) sre numerical,
calculations necessary im order to determine the solution of (20). Since
one may put for smaller x, that is, for the region

IIl<<x<<:lg+ ~
‘%

.

*

(23)

5W=-x
3
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*.
(therewithnot only (18),but also (17) then is satisfied with s~:ient ‘-
accuracy), one may calculate, pro~essing from point to point,
according to (20) from w, and therewith derive w for higher x. It .

is sufficient to perform the numerical calculation for a particular

‘r

2~ FO_a
large value of the constant, for instance ~ . ‘-Foranother

k
value b one ms.y

as one recognizes

then obtain w

(
~(x) =Wax +

by substitution

Figure 1 shows the result of

simple ‘s&litude transformation
—. .-—.

the numerical

i

2K F()_ abmt ~ooo
T% . The numerical integration

value in the region

x>~

w(x) $=7X -

More generally, one obtains therefore

21.85

.—

(23).

calculation for

shows that for this

(25) .
K

:-
in this region of.the k-7 - law:” .

that is,

F(k) =
F3

4%7
()()

o.04g6+; k
l%

A serviceable interpolation formula which is

(26)

—

(27)

correct in the twQ _
limiting cases and does not result in any large errors in the transitio~l “--_
region, eithery reads:

—
—

If one defines ~ = fi/~ as the “diameter of the
elements” and introduces as the Reynolds number of

Pv(yQ
Ro=y

(28)
—

Lxrgest turbulence .—

the total flow -“

(29)
*

.- —
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one obtains according to (9),

k~ =

One may denote ~ -= fifis as
elements” and obtains

L5 =

9

(27), ~d (~)

O.161q@c ) 3/4 (30)

the “diameter of the smallest turbulence

6.251@~) ’314 (31)

By (9), (28),and (30) the form of the spectrum is determined for
the enttie k-region. I?orthe actual flows, of course, the shape of
the spectrum will be different for small k-values (k- ko) since there

the geometry of the tests plays a role, for instance, the skpe of the
grids by means of which the turbulence is produced. In order to be able
to sensibly carry out the conrparisonwith experiments, one will then
introduce a quantity ko in such a manner that, for instance in the

domain of the k‘5/5-kw (thus for k~ >> k >>ko), the formula

.02 ko 513()F(k) =——
3ko k

(32)

becomes correct. The quantity ko thus defined then does not give amy

direct statement regarding the vsriation of the spectrum for the smallest
k-values. Generally, though, the spectrum will greatly deviate tiom the

k-5/3-~w b the region k *&j.

For k >> ks, too, the spectrum will.not unlimitedly retain the form
k-7. The well-known investigations of Burgers7 nuke it very probable that
at sufficiently small Reynolds nurribersfinally no turbulent motions what-

ever exist. On the”other hmdj the k-7-law shows such rapid decey that
the region k >>ks is practically insignificant. A somewhat larger

error will srise, particularly in the trsmsitional region, due to the
inaccuracy of equation (13) itselfj but it is probably not worth while
to a~ly a&eady at this point the much more complicated equation of
section 5 to the problem stated here. The correct equations would at
any rate lead to somewhat different numerical factors in (~), (30),and
(31).

7Burgers, J. M.: Verb. d. K& Nied. Akad. d Wiss. 17, Nr. 2, 1
(1939); 18, Nr. 1, 1 (1940).
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For the comparison with experiment one needs the energy distribution
..

with wave number for a certain direction, for instance with ~t since

the spectra have been meemred ~erimentallyby Simmou8 and Dryde&
.

by means of the fluctuations of the velocity with tbe in an airstream
which is guided past th’emeasuring point at a constant velocity U which
is lsrge relative to Vo. Also, this spectrum has a different form

according to whether the Fourier expansion of ~ or ~ is concerned.

Experimentally, first the spectrum for Xx is required; however, we

shall also derive the spectrum for ~Y since it will be necessary

later on, in the calculation of the correlation f~ctions” Since
according to equation (5) (Y@ = o> one obtains

me spectrum

becomes therefore

(33)

designa~e by Fx(kx)

Rrom (34) and

(a) ko <<

(34)

(35) there follows for

k << ks:
.

(35)

.

.

(36)--

8Simmons, U. Salter: Proc. Roy. Soc. A 165, 73, (i938).
.

. . .--—

9Dryden, Schubauer, Mock u. Skramstad: Nation. Adv. Comm. A&o., - .
Nr. -1, 1.938;Dryden, H. L.: Proc. V. Intern. Congr. ~. Applied. Mech.
Csmbridge, Mass., p. 362,1938. .—.—-
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*

(b) k >> k.:

F(k) = F()
~5/3#3

k7

Fx(kx) = * %5’%16’%-7

2F0 5/3ks16/3&,-7Fy(kx) = ~ ~

As a serviceable interpolation formula (which, however,
less accurate than (28) in the transitional region), one may

with

ksx = 0.645ks

and

6F (kQ)’’3[.+(-&)q2‘+x) ‘&kx

with

%Yx= 0.793 ks

(37)

is somewhat
again put

(38)

(39)

(40)

(41)

Before the comparison with experiment is carried out in detail, we want
to raise the question at what critical Reynolds numibersthe transition

from the k-5/3-law to the k-7-law tskes place, that is, - if one wants
to express it in this manner - the transition from the really turbulent
motion proper to the laminsr motion. One may regard as the critical
Reynold6

wherein,

and (31)

number for this> perhaps, the expression

PTgLSR~= ~ (42)

()

Q 1/3
according to v. Weizsaecker, vs = V. ~ . From (2g), (30),

s
one then obtains

10.2Rs=— K (43)
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The numerical value of ~ will be discussed later on.- At any rate, the
transition therefore tskes @ace at a certain numerical value of the
Reynolds mxiber, as was to be expected from general similitude considera-
tions.

In figure 2, the measurements of the spectrum Fx(~) by Simmonsl”

sre compared with the theory. The measurements h question ere intensity
measurements on an airstream which flows past the measuring point at the
velocities U = 456 cm/sec (0), 608 cm/sec ~), 1060 cm/sec D), and
which has been made turbulent by a grid of 7.6 cm mesh widthj the meas-
urement was made 2.1 m behind the grid. The measured points of Simmons
are plotted individually only in the right part of the figure, in the
left half the approximate scatter of the measured poin%s is indicated

by a vertical line. The abscissa is k in cm-l (in logarithmical
scale), the ordinate Fx[kx), likewise logarithmically, in arbitrary

units. If one assumes U/v. to have the same value in all three meas-

uring series} which is confirmed by other measurements by Taylors one
obtains} in the case of a suitable selection of this ratio, the three
curves plotted in the figure. Qualitatively, the Sizmnonsdata are well
represented by the curves, particularly also the divergence of the three
test series in the short-wave pert.of the spectrum. In details, however,
there exist considerable discrepancies~ one recognizes from the figure

that the range of validity of the k-5/3-law is here s~small that a
reliable check is not possible. The reason for this is the smallness

‘1 the diameter of the turbu-of the Reynolds numiber ~. For k = 1 cm
lence elements is 3 cm, thus about half as large as the mesh width of
the gridj in this region, the turbulence is not yet fully isotropic,

therefore the k-5/3 -law cannot yet be valid. However, already for

k = 4 cm-l the influence of the molecular viscosity beggw noticeable,
and the intensity drops off markedly. The related measurements by Dryden
quoted before which extend over a lsrge spectral regio~ have been made

at Reynolds rmmbers”so Small that the validity of the k-5/3-law can
hardly be checked. Therefore it would be desirable that similsz meas-
urements be carried out at very much lerger Reynolds nunibers. For the
ratio U/vO, one obtains from the adjustment of the theoretical curves

to the measuring points of U/v. = 53tc if one identifies ~ with the

mesh width of the grid. This value agrees well with measurements~ of
this ratio in similar tests if one assumes ~ tobe about 0.5.

10s~oM, u. Salter: %?OC. ROy. SOC. A165, 73 (1938).
11.Cf.G. I. Taylor, Proc. Royal Sot. A, 164, 486, (1938).

.

.

.

.

.

-. .-
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Another and probably more accurate determination of IC is obtained
from the damQing with time of the turbulence, already theoretically treated
completely by Tsylor (cited before). For the total energy loss per cm3
and second: S, there results from(9), (13), and (14)

For the dsmping with time of V. there must thus apply

()–—...gvo~~V02

dt 2

with the solution~

V(JO)
Vo(t) =

, + q. Ic@o(o)t

(44)

(45)

(46)

Taylor who essentially derived this equation reports on measurements
by Simmons in which U/vO(t) was ascertained as a function of t = x/U

(x equals distance of the measuring point from the grid). FYcm (46)
follows

u u+—= —
Vo(t) Vo(o)

If one puts V. = u’O (u’

fiKfix_u
-s- q) vo(o)+o”68’~

(47)

v 2= v-x accor~ to Taylor) and identifies

~ with

from the
However,
for ~,
cent.

the mesh width, there follows from Taylor’s measurements ~ = 0.85,
corresponding measurements by llrydena somewhat smaller value.
because of the uncertainty regsrding the value to be inserted
this determination is probably still uncertain by about 50 per-

3. The Correlation Functions

Taylor and von ‘Kern&I (cited before) studied the correlations which
exist between the velocities at two points at a given distance. The two

l%ootnote at the time of proof correction: For this solution,
~ = consto is presupposed which certainly is not the case for lsrger
times. The problem of dsmping is investigated more closely in a paper
of the author about to be published (Proc. Roy. Sot. A.).
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correlation functions RI(x) and R2(x) which thereti_play the main

role, sre defined as

ZEEiBRl(x) = _ ~(x) .= (48)
~x2 VY2

,- -.

with the point P2 displaced with respect to the point PI by the

distance x in the x-direction.

These functions are, according to Taylor, in a
with the spectra:

—

simple relationship
—

f

m

~x(kx)cos ~

RI(x) = 0 pm

-.
— ._-

Jo W#x(kx)

(49) ,

J’
m

dkxFy(%)cos %&

R2(x) = 0

J m %Fy(% )
o .—

With the aid of equations (34) and (35), (49) is transformed into

. ——.—

~ fmdkl?(k)(sinkx - kx co. kx)k-3x_3
..-

Rl(x) = ‘o — —
—-pm

J dkF(k)
0

.—

J3m50 dJd?(k)(k2x2slnkx + kx COS kx - SiIlkx)k-3x-3

R2(x) =
—

ncu (50)

~
d@k)

o

of .correctnessFrom these expressions one
von K&rmdh’s relationship

recognizes immediately the
—

●

(51)
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The formulas

cases x << l/kB

to
of

(50) may be approximately evaluated in the two limiting

and l/k~ << X << l/ko. When x <<f, it is advisable
s

emsnd the integrands with
th= expansion then lead to

respect to powers of x. The first terms
the quantity

/’” dld?(k)kp
kz .JO

*W

J dkT(k)
o

which may easily be calculated from (13), (44), and (29):

Thus one obtains:

For x << l/ks

15

(52)

(53)

(54)

X22
R2(x) =1-Y+...

Taylor defined a length A by the equation

A2 5=-~ (55)....

and designated it as a measure for the magnitude of the smallest turbu-
lence elements. According to (53), A becomes

(56)

It ruus.tbe emphasized that A is not identical with the quantity
Ls (equation (31)) which we have denoted as “diameter of the smallest

turbulence elements” and that A also depends on ~ and V. in a
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manner different from that of Ls. A comparison of (31) and (56) shows
that for sufficiently large Reynolds numbers ~ becomes <<1. .

In the opposite limiting case l/ks << x << l/ko one obtains
from (50)

-.

RI(x) = 1 - o.643(kox)2/3+. . . -.
=.

(57) -

R2(x) = 1 - o.858(kox)2/3 + . . .

Here these first terms of the expsmsion do not depend on the special form
of the spectrum in the proximity of ~; only for x - l/~ does the form

of the spectrum in the proximity of ko becomes ~rt~tj there, however,

the problem may no longer be treated with purely statistical methods.
The formulas (54) smd (57) thus give essentially a complete description
of the correlations in so fsr as they may be regarded as a consequence
of statistical isotropic turbulence.

—

The fomnul.as(54) and (57)also show clearly that ~he correlation
function does not have the same form in dl flows tit that rather) ~ the -
case of variations of the pszxameters,the inner and outer parts of the.
function undergo different similitude transformations. This petit haa
been stressed particularly by Taylor13 in contrast to a different con-

.

jecture of von K&rn&.n(cited before). .-

For comparison with experiment, the measurements 0~ R1(x) ~d R2(x)
made by Simmons have been plotted (circles and dots, respectively) in
figure 3; furthermore, the theoretical curves calculated according to
the exact formula (50) are shown. Here again ~ has been identified

—.

with the mesh width of the grid and A has been calculated from the
spectrum for U = 106o cm/sec.

.-
The experimental values_agree, in fact,

with the theoretical ones very exactly at the smaller values of Xy
actually more exactly than could have been expected in ~iew of the uncer-
tainty of Io. Beginning from xko. 1 the “deviationof the experimental

:~ointsfrom the theoretical curves.becomes noticeable which was to be
expected from the derivation. The variation for larger=x-values depends
cm the behavior of the spectrum in the proximity of ko which cannot}
tn principle, be represented by our formulas.’”But even for larger x-vai=es
the deviations from the theoretical curves remain small.
.

13G. 1. Taylor, Jour. &“ro. Sci. 4, No. 8, 311, 1937.

●

—. -- .—
.— :-

—
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4. The Pressure Fluctuations

While studying the diffusion in a turbulent airstream, Taylor (cited
before) has derived a relationship between the correlation function for
the diffusion and the root mean squsre value of the pressure gradient.
We shall investigate therefore also the root mean squsre values of the
pressure fluctuations from the viewpoint of

With reference to eqyation (2) one may
Fourier series

p= 1 l&=>2.&
&

and the fundamental hydrodynamic equation

the theory

expand the

Pk*
—

here described.

pressure into a

(58)

(59)

% = -~; (~:~)(~-lcbk) (60)— —
—

For the root mean square values of pressure and pressure gradient there
results

~= II 1@

We are interested, first, in this

=% =)j’1~1
latter mesm value:

(61)
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The superscript bar indicating approximation to the mean signifies
here si@ly approximation to the mean in time. If one wants to calculate
mesm values of the type (62), one must take as a basis some kind of
“assumption of disorder” regsrding the turbulent motio~.

.-
One may start

from the fact that the amplitudes ~ in the course of time fluctuate

by a value given by (10) or (28), respectively, so that the time aversge

~y-k is given simply by the spectrum (28). TIE phas~s of the ~,

h~we~er, will in the course of time pass through all possible v&&; all
values of the phase will occur, on the average, with the same frequency.
If one could regard the phases pertaining to different wave numbers as
completely independent statistically, there would, in taking the mean of

such products of four factors ~&~@.&&J be left only the terms in

which every two wave numbers me equal and opposite; thus, terms of the

t~e %cl%l~~-$’ and these mean values could be replaced by the pro-

ducts of the mean values of the squsres of the amplitudes:

(63)

Actually, however, statistical correlationswill exist between the phases
pertaining to different wave nuniberssince the waves mutually influence
one another. In section 5 we shall attempt to estimate such correlations
in a simple case. In spite of the presence of the correlations,however,
we are inclined to assume that in a sum of the kind (62)the terms of the
type (63)make the largest contribution since their mean value is differ-
ent from zero even in the first approximation,without any assumption
regarding the behavior of the waves with respect to time whereas the
other mean values attain a value different from zero only because of the
finer fluctuations of various waves. We believe therefore that one obtains
a serviceable approximation
in (62) into consideration.

if one takes only the terms of the type (63)
Then there results

2-*grad% = 2p2
k’k’‘--

(%fk)(w’’)(%’k’)(x-k’&’)

.

.-

(64)

.—

.
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.

m taking the mean with respect to the directions of the ~ - one ass-s

. again all directions perpendicular to & for & to be equally probable -

it is expedient to use the relation

Thus one obtains

(65)

~2
grad% =7 x

klk!? l=llv~’’21rk’2kiu%’)2]2 “6)-—
If one sets (kfk!i) =klkl! ~, one cm Perfom the integration with respect
to ~ and fin&–

ii=% = Q._, ]@l pp”++ (67)
. -- .

where

[

11 2+;s4-s
*(S)=** =* -l+p’

6+&#& 1+s

1m

(68)

For O S s << 1 there applies s@proximately

H one transforms the
trum (28) into (67), there

(8s1 -2s2+s4
= 15 7 E )

(69)

sums into integrals and substitutes the spec-
follows finally

(70)
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One recognizes from (70) that the integrals converge at smal”~k-values,
and that one may therefore perform the integration from k = O without a

considerable error. This shows that grad% is actually determined by the ‘
behavior of the spectrum at large k, that is, by the smallest turbulence

elements. Had we calculated ~, we would have found, on the contrary, that
the integral diverges at small values of k, thus that its value is deter-
mined entirely by the largest turbulence elements.

—
Therefore, the value of

Z cannot at all be calculated according to the mthod”used here; for,
first, in the case of small k, the spectrum has a form-dependent on the
geometry; and second, it would surely by quite unjustified to consider, for
the largest turbulence elements, only the mean values of the type (63) since
the geometry certainly impresses definite phase relatiogs upon the system of
the largest eddies.

Equation (70) now becomes

The double integral at the right wae estmted,._ac.cordingto a gra-
phical method, to be 0.763; thus there follows finally (cf. (~))

—

grad2p = 0.17p2vo&4/~s2/3 ‘“

—

= o.05p2v04k#@

(72)

(73)

.-

Taylor (cited before) had expressed the _gonjectwe_t.hat grad2p

should have the ssme order of magnitude as p2v02(&/ax)~ -thus the order
2 4 2/3ks4/3. One recognizes now from (72) that grad2pof magnitude p vo ~

must be considerably smaller, the more so, the larger the ratio ks/~.

The length AV defined by Taylor:
.—

+2
()
~2 ‘“” —

O
= 2P2 ~Y

“~
—

AV2
(74)

,—

.

- --
——-..— —
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that is,

(75)

must, therefore, for large Reynolds numbers, become considerably larger
than the length A of equation (55). From (75), (73), and (56) follows

(76)

It is true that this result does not agree with the experimental
findings. Taylor indicates, for a test which Simnons had performed
adjoining similar experiments by Schubauer14, AT/A = 0.5 where one must

assume approximately $@i ~ 3.9 according to the test conditions.

Thus one must raise the question whether the result (72) has perhaps .@en
falsifiedby the fact that only the terms of the type (63) were taken into
consideration in taking the mean. However, one can easily see that this
may perhaps affect the numerical factor in (72) but that the dependence of
~ and ks, that is, the dependence of An on (~~) is in no way con-

nected with this approximation. For already equation (62) shows that on
47

~/the right side the normalization factor V. : must appear, because

of equation (10). After the mean has
7

en taken, this factor is supple-
mented by a factor of the dimension k2 3 which obviously canbe at most

2/3; it must be, because the pertaining integral withof the order ks

respect to k would diverge like k2/3 if the decay of the spectrum
would not set in for k - ks with k-7. There would remain the possi-

bility that only the numerical factor in (72) has been estimated as too
low due.to the consideration solely of the terms of the type (63). But
it is hard to imagine that the correct expression would increase by more
than a tenfold - which would be necessary for interpretation of the
experiments.

Perhaps the contradiction may be cleared up in the following manner:

The main contribution to grad% stems from wave numbers of the order ks,

thus, from turbulence elements whose dizunetermeasures a few millimeters.
In Simmons’ test, the alrstream is heatedby a hot tire of 20 cm length
stretched across the tind tunnel, and then the distribution of the.heated
air is measured at a certain distance behind the hot wire. Precisely the
smaller distances (5 to 17 cm) are decisive for the determination of ~.

lqschubauer: Rep. Nat. Adv. Comin.Aero. Nachr. Nr. 524, 1935.
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It suggests itself to assume that the hot wire itself produces in
the airstream a small vortex street and additional turbulence, with the
turbulence elements probably having a length of a few millimeters - that

.

is, the wire increases precisely the intensity of the turbulence in the

spectral region which exerts the strongest influence on grad2p. The
additional turbulence in the irmnediateproximity of the wire is probably
much more intense than the original turbulence of the same wave range.
However, this additional turbulence is rapidly damped, of course, and it
is surely difficult to estimate whether this turbulence alone can explain
the discrepancy between (76) and the empirical An-value.

5. Energy Dissipation for Nmmal Isotropic Turbulence
—

The investigations of the preceding section are already closely con-
nected with a basic problem of the statisti&l turbulence theory: nsmely,
with the determination of the energy dissipation in the case of normal
energy distribution, that is, the determination of the constant ~ in
equation (12). In this problem the molecular friction m&y be neglected
entirely. The fundamental hydrodynsmical equations could therefore be
presupposed in the form

-- .——

~=-(yv)x-$v-p Vy=o .

Furthermore, a suitably singled-out partial volume of the fluid is to be
selected as normalization volume which under certain circumstances is
moved simultaneouslywith the fluid, corresponding,“forinstance, to the
mean value of the velocity with respect to the volume. We assume therefore
that the volume moves with the velocity ~. Then (6o) is transformed into

— : =. —_—,

%_
[

= -ix (yklg ykk,

1

- :(%-k , Js) + i(QKJq (77)
k’ - --- .-
— .

For the calculation of the energy dissipation, one has to ascertain

l-l
how the intensity %2

(
of a certain natural vibration or perhaps

better: the sum of such squares of amplitudes with respe& to a small
k~

spectral region Ak:
gl 1)

%2 varies in the course of time. One

—d —
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recognizes from (77) that one needs for this purpose time averages with
respect to products of the type

%.l + %_3 (78)

wherein k =
-3

-El - ~. Because

of the phases, these mesm values
statistical correlations between

of the statistically uniform distribution

would disappear if there would not exist
the phases pertair@g tO different K

which stem from the mutual influence of the various waves, as has been
explained already in section 4. In order to ascertain these correlations,
one must somehow express in the equations the influence exerted upon a
wave with given & by waves with a different & one may do this for
instance by representing one of the three amplitudes in (78) as a time

integral over & and expressing & in turn by a sum over two other ~

according to (77Y. Then one obtains-products of foux amplitudes ~ each

of which, however, must partly be taken at different times. For such pro-
ducts the considerations of section 4 are valid according b, which one
obtains a first approximationby taking only products of the type (63)
into consideration. Of course, one could continue the procedure in prin-
ciple and attempt to calculate the other mean values of quadruple products
by tracing them back to six-fold ones, etc. However, such calculations
would probably become much too complicated; the higher te?nnsprobably also
would make a lesser contribution, and we shall thus be content with the
first step.

For these ‘calculations,one will o%viously need mean values of the
type

~(t)y-k(t+ ‘)

and we define therefore

Rk(t,T) (79)

8
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The summation over a small spectral region Ak has

NACA TM 143i

.“.

been included
into the definition of Rk(t,T) so that the magnitude of the normaliza-

tion volume does not directly enter into Rk(t,7) and that the mean is

taken equzdly over all directions of ~. Evidently the spectral region Ak
must be selected wide enough that many natural vibrations of the no~liza- ““

tion voltie still may be accommodated in it (that is, k21SsV>> 1), yet
very small compared to k itself. These requirements are for the turbu-
lence elements of the order of magnitude V themselves no longer compatible
but for those, the-statisticalmethods cannot be applied anyway, The whole _
procedure thus can be carried out only if it is found that the large turbu-
lence elements practically do not any more contribute to the mean values to
be investigated.

—

In order to obtain from the hydrodynamical equations information
about the quantities Rk(t>7)> it s~gests itseu to examine the follting

expression:

.

In

to

%-this expression one can replace ~, by a time integral with respect –

If T is selected sufficiently large, the correlation between
~-k,(t) and &,(T) will disappear; it is therefore expedient to per-.—

form, after substitution into (80), the limiting process T~co, If, in
addition, one takes the mean with respect to the Directions - thus elimi-
nating the term with u - one obtains from (8o) and (81): .

.
●

, .-

.-

—.



NACA TM 1431 25

.

.

.

.

If one furthermore, as in section 4, takes into consideration the terms
of the type (63)only, also replaces & - ~’ by ~’, and integrates with
respect to the cosine of the angle between ~ and this vector, there

follows:

( )x~r t ++,T’ k-%c’-3(~ - [( )k12) ~’ kk+lctk- $k2kf2 -

I‘g+“’)(& - “2) W++
(83)

This equation presents the possibility of expressing the differential
dRk(t,7) ~d ~k(t,7) ~

quotients with respect to time
dt d-r

y the Rk them-

selves; when the Rk are known, one can, moreover, CalCUlate the energy

dissipation from (83), putting T = O. For this purpose we shall assume
that the entire turbulence phenomenon is either stationary or is damped

II
very slowly so that the times dm?ing which the in*nSitY yk2 noticeably

varies are very long comp-aredwith the ~luctuation period o; ~k. The

I
notation yk2 represents, therefore, the mean value over a time which is

certainly much longer than the fluctuation period but is very much shorter
thsm the damping time.

The equation for
dRk(t,T)

dt
gives a measure for the fluctuations of

the q~ntity Rk(t,7) as a function of t about its the mean:

(84)
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One may surmise that these fluctuations are smll in the region of small T
which is determined by the small turbulence elements, and that they increase
with growing T; this question will be further investigated later on.

1

Before carrying out the further calculations one has to determine.how
the partial volume V and its velocity u are to be chosen. One could
first try to put ~ = O and to identify ‘V with the total volume. How-
ever, one would obtain an erroneous picture of the actual conditions: The

decrease with time of the correlation function Rk(t,T) . Rk(T) as a

function of T is determined in this coordinate system by the largest
turbulence elements, and is therefore very rapid. One.can show that the
correlation function in this coordinate system is given with sufficient
approximation by —

....-.—..“—

—
—..——

The calculations which have led to this expression need not be discussed ._ -
in more detsil since the expression 1s not further used later. The
physical interpretation of the expression is given by the following con- .
sideration: The function Rk(T) in it decreases after a time of the

order ~,
—

that is the time during which, for instance, precisely an
kvo‘

~, due to the high velocity in the largest tur-eddy of the wave length
k

b~lence elements) passes by the point of observation. me fact tkt the
correlation function decreases after that time signifies therefore simply
that the velocity in the largest turbulence Elements is of the order of
magnitude Vo, but, statistically, fluctuates about values of tlds order.
This phenomenon is not connected with the disintegration of the eddy of

the wave length ~. If the F(k)- k-5/3-law is valid, it is rather to

be expected, according to the similitude considerationsof v. Weizsaecker,
that the disintegration of the eddy takes place only after time intervals

‘-~-2/3%-l/3 Ontk other tid, however, the energyof the order 2fivo .

dissipation is connected with the disintegration of the eddies, not with
the motion on a large scale. If one wants to describe the disintegration
of the eddies in equations, one must move the coorcthate system at the
same time. One then must tie the”linear dimensions of the partial vol- ~

ume V somewhat, but not very much larger than ~ and move it simul.
k

taneously in proportion to the mean velocity within it. We shall ass~e .

..-.
-,.—

—

—.- —
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.

experimentally that one can give for every k a volume

. to it in such a mamner that Vk3 becomes independent of
the thus selected, simultaneouslymoved volume elements,

27

V corresponding

k and that for
the correlation

function R(t,T) is a universal function of’the variables
&3#3t

. . .

and Vol@&j/3T as is to be emected accor~w ‘0 ‘- ‘eizs=cker’s

similitude consideration. We shall show that the relations for Rk(t,T)

arising from (83) actually can be satisfied

are distributed accbrding to the k-5/3-law.
. ●

If one puts Rk(t,T) = g(!)n) wherein

by this assumption if the Fk

(85)

.

there follows from (83)

where

(87)
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These equations actually do no longer contain the constants ~, Vo.

The reason is that the integral with respect to y converges for small as .
well as for large y; f(y) disappears stificiently for y = O as well as
for y+. Therefore one may take the integral over k’, instead of from ~
ko, simply from O, without considerable error; m“oreover,the convergence

of”the integral for large values of k shows that the molecular friction
actually is of no importance in this problem; the behavior of the spectrum
in the region of the smallest turbulence elements is “imimportantfor the ‘-
correlation functions R(t,T) and the energy dissipation for medi~ ..
k-values.

L.. - -.
,.. .-

Before attempting the numerical solution of (86)~we shall use the
equation (83) for calculating the energy dissipation in the approximation
here aspired to. For this purpose we put r = O and antegrate the eqy.a-
tion (83) with respect to k between two arbitrary hits K~ and K2:

(“ - +’++ k,’ - $’%,2)- (“+ tc@)(k2- W’)%!..i (88, ,

‘l’heintegrand on the right side is an antisymmetrical function in””k ‘~ -
and k’. If one calculates the variation with time of-the total energy,
that is, if one puts K1 = O, K2 = m, there results therefore zero, as

far as the integral on the right converges at all. That is, the total
energy is constant in time; this is a necessary requirement since the
molecular friction has not been taken into consideration. However, if
one considers the variation with time of the energy which is contained in
the part of the spectrum lylng between K1 and K2~ the integral on the

right side may be transformed in the following manner ‘(weshall call the
antisymnetrical integrand simply J):

..-=.

. .
.

.
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In the first of the two integrals on the right J is always posi-
tive; in the second (-J) is always positive. From this notation there
follows that the first integral may be interpreted as the energy which,
per unit time, flows from smaller wave numbers (k’< Kl) into the region

between K1 and ~; the second integral as the ener~ which flows toward

larger wave numbers (k’ >K2). If one puts, in particular, K1 =0 and

K2 >> ~, the second integral represents the entire energy dissipation;
P- .9

h)for the normal.spectrm F k - k‘5/3] it m~t prove tO
~. !l%usone obtains from (83), (86), and (89) for the

tion the expression

nK2

be independent of
energy dissipa-

S= &3$&*J:w(Y) J’W(K- ;+((, +%@)

This expression is actually independent of ~ as it must be. Since

the entire energy dissipation according to equation (~) is also givenby

~
p~ 3VO%0, there follows

(91)

From this equation ~ can be calculated numerically if the function
g(g,q) is ~-=

We now turn to the treatment of the equation system (86). This sys-
tem represents a considerable simplification compared to the initial
equation (~) in so far as it does not any more contain any dimensional

quantities, and is already derived from the equilibrimn spectrum k-5/3.

On the other hand, (86) also still contains statements regarding the
fluctuations of the g((,q) as a function of the ~ =d is, for that
reason, doubtlessly too complicated to permit rigorous solutions. One
could attempt to completely neglect the fluctuations in a first approxi-
mation, and to calculate with the mean values. Unfortunately, however,

—.
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it turns out that the contribution of the fluctuations in certain regio-m
is large. One recognizes this from the secofidequatfon (86).

For, if one puts -.

where g(q) signifies the mean value over ~ of g(~,q):

there

g(v) =g(L,v) (93)

follows from the time mean of the second equation (86):
—

~[

m

@f(Y) dq’ g(q’ - n)+g(q’ +qg(q’Y2/3) “-

-.

This relationship shows that the fluctuations
always be small. It is true that the left side of

~ = 0; this foll~s from the relation

()fl = -y4/3f(Y)
Y

(94)

—-

43(C,II) cannot
(94)vanishes for

—

(95)

—
.

.r--
.

—=

. . .. . . .. .

.-

.

.-

=

,-
-. . ..- . .. .. .

-. ——

.-

-— .

.-

.
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which will have to be discussed later, and

k-5’3 is actually in equilibrium; however,
assumes appreciable values. Therefore, it

31

signifies that the spectrum

for larger lq~ the left side
is doubtful whether one will

obtain a sufficient approximation if, in the transition from (82) to (85),
one takes only the mean values of the type (63) into consideration. How-
ever, I did not succeed in improving here the approximation or in
obtaining more than a very crude estimation of (86).

One may perhaps assume for such an estimation that, for large values
of q, the first term of the summation on the right side of (94) is much
larger than the second. For in the first one, the integral is taken over
the region ~[ - q which probably contributes a great deal whereas in the
second, for large q, the factors Ag have already strongly decayed in
the entire integration range. One may therefore attempt the assumption,
at least for large q, that the second term of the sumnation on the right
side of (94) may be neglected. In this approximation the time average of
the first equation (86) then becomes, with use of (94):

W’-wfy‘) r “’g(’+“)g@’<’3)‘ ‘for‘>>O)“6)

One may utilize this equation, for instance, in such a manner that
one assumes a plausible form for g(q), leaving the scale in the
q-tirection undetermined at first, and determining it subsequently so
that the equation (96) iS valid as exactly as possible for large q. ~
this way one will describe the steepness of the decrease of g(q) for
large q with some correctness, and precisely this steepness is decisive
fOr the value of K.

In the practical execution of the calculation it is expedient to
introduce, in the place of y and f(y), new variables

s.y2/3; cp(s)ds=f(y)dy (97)

~ Then there applies as one recognizes from (87) (compare also (95)): -.

(J)(*)= -Sq)(s) (98)
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This equation is based on the fact that ”theenergy dissipation from

the wave number $ to the wave number k coincides with the one from k

to ak, except for a factor qualified by the similftu&” transformation.
Furthermore, there then applies in good approximation _

q)(s) S+(1 - “+ -7) (for O~S~l) (99)

and
0<

—

for larger s one can reduce q(s) by means of (98) to the range
S<l.

Figure ~ gives a plausible curve for g(~), and in addition the right
pm

side of (96)as
LI

dq... and g’(~). The scale fs selected in such
o

a manner that the two,last curves coincide for large q. Considerable
differences then exist for s~ll ~ but there the equation (96) also can
no longer be correct. If one substitutes the function g(~) thus
obtained into (91) and neglects the fluctuations, there results for ~:

/

1

J’
m

K
1=— ds(-lg S)cp(s) d~g(q)g(qs) =0.98 (loo)
26 0 0 .

This crude estimation therefore gives the correct order of magnitude
for ~, but the exact value may well differ from 0.98 by as much as a fac-
tor 2. The calculations of this section thus have not led to an exact
calculation of the constadt IC but they did provide a ‘qualitativemathe-
matical representation of the processes on which the energy dissipation
is based. Perhaps it will be possible to arrive at a rather exact experi-
mental determination of ~ by means of a comprehensive Ctl.scussionof the
various experiments of Simmons, Dryden (cited before), Prandtl15, and
others regarding the spectrum and the dsmping of turbul~nce.

Translated by Mary L. Mahler
-.

—
National Advisory Committee .— —

for Aeronautics

15Prandtl, L.: Proc. VI. Intern. Congr. f. Appl. “Mech.Csmbridge,
Mass., 1938, p. 340.
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Figure l.- Representation ofthefunction w(x).
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.Figure2,- The turbulentenergy distributionas a functionof
number.
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